Tetrahedron Letters 49 (2008) 4402-4404

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A novel one-pot synthesis of 3-carbomethoxy-4-arylfuran-2-(5*H*)-ones from ketones using [hydroxy(tosyloxy)iodo]benzene

Nandkishor N. Karade*, Sumeet V. Gampawar, Jeevan M. Kondre, Sandeep V. Shinde

School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India

ARTICLE INFO

Article history: Received 19 March 2008 Revised 30 April 2008 Accepted 3 May 2008 Available online 9 May 2008

Keywords: Hypervalent iodine γ-Lactone Potassium monomethyl malonate Enolisable ketone

ABSTRACT

A novel one-pot procedure for the synthesis of 3-carbomethoxy-4-aryl furan-2-(5*H*)-ones is reported via α -tosyloxylation of enolisable ketones with [hydroxy(tosyloxy)iodo]benzene, followed by treatment with potassium monomethyl malonate and K₂CO₃.

© 2008 Elsevier Ltd. All rights reserved.

Recently, there has been significant growth in the applications of hypervalent iodine reagents in organic synthesis.¹ [Hydro-xy(tosyloxy)iodo]benzene (HTIB) commonly known as Kosser's reagent is the sole efficient reagent for inducing α -tosyloxylation of enolisable ketones.² The resulting α -tosyloxyketones are environmentally benign alternatives to the toxic and lachrymatory α -haloketones. Since it is generally not necessary to isolate the α -tosyloxyketone, they can be utilised in situ as strategic precursors for the one-pot synthesis of a wide range of heterocycles such as thiazoles, selenazoles, oxazoles, imidazoles, pyrazoles and benzofurans.³

The γ -butenolide structural subunit is present in a growing number of natural products and synthetic compounds with wideranging biological properties.⁴ This biological importance of γ-butenolides has prompted the development of a plethora of methods for their synthesis.⁵ The preparation of γ -lactones is achieved mainly by the halo- or seleno-lactonisation reactions of β_{γ} - and γ,δ-unsaturated carboxylic acids.^{5a} The success of these reactions is due to the facile halo- and seleno-functionalisation of the carbon-carbon double bond followed by neighbouring group participation of the nucleophilic carboxyl group. As HTIB is known for the α -tosyloxylation of enolisable ketones² as well as for *vic*-ditosyloxylations of alkenes,⁶ it can be used safely as an alternative to halogen or selenium reagents in the lactonisation reactions of appropriate carboxylic acids. The reactions of β_{γ} - and $\gamma_{\gamma}\delta$ -unsaturated carboxylic acids⁷ and 5-oxocarboxylic acids⁸ with HTIB are known for the efficient synthesis of γ -lactones. In spite of this excellent intramolecular strategy, precursors such as β , γ - and γ , δ unsaturated carboxylic acids and 5-oxocarboxylic acids are poorly available commercially and therefore, special efforts are required for their preparation. Recently, Wirth and co-workers reported the efficient synthesis of γ -butenolides from β , γ -unsaturated carboxylic acids using PhI(OCOCF₃)₂ and a catalytic quantity of (PhSe)₂ under mild reaction conditions.⁹ Furthermore, the free radical-based cyclisation of aliphatic carboxylic and benzoic acids using a hypervalent iodine(III) reagent and KBr to form γ -lactones was reported by Kita and co-workers¹⁰ The above-discussed strategies for γ -lactone synthesis are based mainly upon intramolecular cyclisation of appropriate carboxylic acids.

A literature survey revealed that γ -lactones can be synthesised by the reaction between olefins and β -diketones or β -ketoesters,¹¹ or potassium monomethyl malonate¹² using a suitable single electron oxidant. The mono-potassium salt of dimethyl malonate is a readily accessible versatile building block possessing doubly nucleophilic character at the carbon and oxygen centres.¹³ It has been used in combination with olefins in presence of Mn(OAc)₃ as a single electron oxidant to form γ -lactones in reasonably good yields.¹² However, the addition is not regioselective in the case of unsymmetrical olefins and therefore, side products are formed.^{12b} In continuation of our interest in hypervalent iodine reagents,¹⁴ herein we report a novel one-pot synthesis of 3-carbomethoxy-4-arylfuran-2-(5H)-ones from enolisable ketones and potassium monomethyl malonate using HTIB (Scheme 1).

The success of this reaction is due to the facile in situ formation of α -tosyloxyketones **2** followed by efficient trapping with potassium monomethyl malonate to form methyl 2-oxo-2-arylethyl malonate **3**, which finally undergoes base (K₂CO₃) catalysed

^{*} Corresponding author. Fax: +91 2462 229245.

E-mail address: nnkarade2007@rediffmail.com (N. N. Karade).

cyclisation to form γ -butenolides **4**. Intermediates **2** and **3** are not isolated during the reaction.

The reaction conditions were optimised by considering the model reaction of acetophenone and potassium monomethyl malonate using HTIB as oxidant. A mixture of acetophenone (0.360 g, 3 mmol) and HTIB (1.293 g, 3.3 mmol) was refluxed in CH₃CN for 1.5 h with TLC monitoring of the reaction. After the successful formation of α -tosyloxyacetophenone **2**, potassium monomethyl malonate (0.468 g, 3 mmol) was added and the reaction mixture was refluxed (5 h) until complete consumption of 2 had occurred. Finally, K₂CO₃ (0.248 g, 1.8 mmol) was added and the reaction mixture was refluxed for 1.5 h to afford methyl 2,5-dihydro-2-oxo-4-phenylfuran-3-carboxylate 4a in 72% yield.¹⁵ Simultaneous addition of potassium monomethyl malonate and K₂CO₃ to the in situ formed α -tosyloxyacetophenone resulted in the formation of several side products. This is due to competition between O-alkylation and C-alkylation reactions of α -tosyloxyacetophenone with potassium monomethyl malonate. Alternative bases such as Et₃N and piperidine were found to be inferior to K₂CO₃. The optimised reaction conditions required 0.6 equiv of K₂CO₃ with respect to 1 equiv of ketone to provide satisfactory yields of the product. The insolubility of potassium monomethyl malonate in CH₃CN affects the yields of methyl 2-oxo-2-arylethyl malonates 3a-g. However, a slight excess of potassium monomethyl malonate (1.2 equiv w.r.t. ketone) improved the yield of the open-chain malonate 3. The key intermediate, methyl 2-oxo-2-arylethyl malonate 3, was isolated in a few cases (Table 1) and characterised by IR, NMR and mass spectral analysis.¹⁶ The ¹H NMR spectra of **3a-g** exhibited three sharp signals readily recognised as arising from two methylenes (δ 3.59 and δ 5.34) and –COOMe (δ 3.78) protons.

Table 1

Formation of methyl 2-oxo-2-arylethyl malonates from substituted acetophenones and the potassium monomethyl malonate using HTIB in CH_3CN

	(i) PhI(OH)OTs	, CH ₃ CN, ref	lux (1.5 h) Ar	COOMe
Ar $(ii) \operatorname{MeO}_2\operatorname{CCH}_2\operatorname{CO}_2\operatorname{K}$, reflux (4-5 h) (iii) K ₂ CO ₃ , reflux (1.5 h) 1 4				≥ ₀
Entry	Ar 1	Product	Reaction time (h)	Yield ^a (%)
a	C ₆ H ₅ -	4a	11	72
b	4-MeOC ₆ H ₄ -	4b	12	76
с	2-MeOC ₆ H ₄ -	4c	14	69
d	2,4-(MeO) ₂ C ₆ H ₃ -	4d	13	68
e	4-MeC ₆ H ₄ -	4e	10	67
f	$4-BrC_6H_4-$	4f	13	66
g	2-BrC ₆ H ₄ -	4g	14	64
h	$4-ClC_6H_4-$	4h	11	69
i	2,4-Cl ₂ C ₆ H ₃ -	4i	13	71
j	$4 - O_2 NC_6 H_4 -$	4j	12	63

^a Isolated yield.

To check the validity of the above-mentioned strategy for γ butenolide synthesis (Scheme 1), we carried out the reaction of isolated methyl 2-oxo-2-phenylethyl malonate **3a** (1 mmol) with K₂CO₃ (0.6 mmol) in acetonitrile at reflux (1.5 h). We obtained methyl 2,5-dihydro-2-oxo-4-phenylfuran-3-carboxylate **4a** in 69% yield (Scheme 2). Comparing the ¹H NMR spectral data of **3a** with cyclisation product **4a** showed that the signal corresponding to the methylene protons flanked by the two ester groups around δ 3.58 had disappeared in the case of **4a**.

After establishing optimum reaction conditions, we carried out the synthesis of 3-carbomethoxy-4-arylfuran-2-(5*H*)-ones by treating variously substituted acetophenones with potassium monomethyl malonate using HTIB and the results are summarised in Table 2. The corresponding 3,4-disubstituted furan-2-(5*H*)-ones were obtained in good to excellent yields. To the best of our knowledge, this is the first report on the synthesis of 2-furan-(5*H*)-ones possessing an aryl group at C-4 position using potassium monomethyl malonate and substituted acetophenones.

In conclusion, we have developed a novel one-pot synthesis of 3-carbomethoxy-4-arylfuran-2-(5*H*)-ones via α -tosyloxylation of ketones with HTIB followed by treatment with potassium monomethyl malonate and K₂CO₃. Extension of this method to the preparation of other heterocyclic compounds of biological significance is underway in this laboratory.

Acknowledgements

The authors are thankful to the Department of Science and Technology (No. SR/FTP/CS-77/2005) and the University Grants Commission, New Delhi, India (No. MRP 32-245/2006 SR) for the financial support.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2008.05.012.

References and notes

- (a) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656; (b) Moriarty, R. M. J. Org. Chem. 2005, 70, 2893; (c) Stang, P. J. J. Org. Chem. 2003, 68, 2997; (d) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523; (e) Moriarty, R. M.; Prakash, O. Org. React. 2002, 57, 327; Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: London, 1997; Chapter 7, p 115.
- (a) Kosser, G. F.; Wettach, R. H. J. Org. Chem. **1976**, 41, 3609; (b) Kosser, G. F.; Wettach, R. H. J. Org. Chem. **1977**, 42, 1476; (c) Kosser, G. F.; Wettach, R. H. J.; Smith, C. S. J. Org. Chem. **1980**, 45, 1542; (d) Kosser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. **1982**, 47, 2487; (e) Moriaraty, R. M.; Penmasta, R.; Awasthi, A. K.; Epa, W. R.; Prakash, I. J. Org. Chem. **1989**, 54, 1101.
- (a) Kosser, G. F.; Wettach, R. H. J. Org. Chem. 1977, 42, 1476; (b) Moriarty, R. M.; Vaid, R. K.; Hopkins, T. E.; Vaid, B. K.; Prakash, O. Tetrahedron Lett. 1990, 31, 201; (c) Moriarty, R. M.; Vaid, B. K.; Duncan, M. P.; Levy, S. G.; Prakash, O.; Goyal, S. Synthesis 1992, 845; (d) Prakash, O.; Goyal, S. Synthesis 1992, 629; (e) Prakash, O.; Rani, N.; Goyal, S. J. Chem. Soc., Perkin Trans. 1 1992, 707; (f) Prakash, O.; Saini, N.; Sharma, P. K. Synlett 1994, 221; (g) Prakash, O.; Saini, N.; Sharma, P. K. Heterocycles 1994, 38, 409; (h) Uneno, M.; Togo, H. Synthesis 2004, 16, 2673.
- (a) Tomioka, K.; Ishiguro, T.; Koga, K. J. Chem. Soc., Chem. Commun. 1979, 652;
 (b) Tomioka, K.; Ishiguro, T.; Koga, K. Jetrahedron Lett. 1980, 21, 2973;
 (c) Vigneron, J. P.; Meric, R.; Larcheveque, M.; Debal, A.; Kunesch, G.; Zagatti, P.; Gallois, M. Tetrahedron Lett. 1982, 23, 5051;
 (d) Tomioka, K.; Sato, F.; Koga, K. Heterocycles 1982, 17, 311;
 (e) Tomioka, K.; Ishiguro, T.; Koga, K.; Ishiguro, T.; Litaka, Y.; Koga, K. Tetrahedron 1984, 40, 1303;
 (f) Vigneron, J. P.; Meric, R.; Larcheveque, M.; Debal, A.; Lallemand, J. Y.; Kunesch, G.; Zagatti, P.; Gallois, M. Tetrahedron 1984, 40, 3521;
 (g) Mann, J.; Thomas, A. J. J. Chem. Soc., Chem. Commun. 1985, 737;
 (h) Drew, M. G. B.; Mann, J.; Thomas, A. J. J. Chem. Soc., Perkin Trans. 1 1986, 2279;
 (i) Mann, J.; Thomas, A. J. McHam. Lett. 1986, 27, 3533;
 (j) Ortega, M. J.; Zubia, E.; Ocana, J. M.; Naranjo, S.; Salva, J. Tetrahedron 200, 56, 3963.
- Review: (a) Ranganathan, S.; Muraleedharan, K. M.; Vaish, N. K.; Jayaraman, N. *Tetrahedron* **2004**, *60*, 5273; (b) Lopez, J. A.; Guerra, F. M.; Moreno-Dorado, F. J.; Jorge, Z. D.; Massanet, G. M. *Tetrahedron Lett.* **2007**, *48*, 1749; (c) Babu, S. A.; Yasuda, M.; Okabe, Y.; Shibata, I.; Baba, A. Org. *Lett.* **2006**, *8*, 3029; (d) Liu, Y.; Liu, M.; Guo, S.; Tu, H.; Zhou, Y.; Gao, H. Org. *Lett.* **2006**, *8*, 3445; (e) Genin, E.; Toullec, Y.; Antoniotti, S.; Brancour, C.; Genet, J.-P.; Michelet, V. J. Am. Chem. Soc. **2006**, *128*, 3112; (f) Bassetti, M.; D'Annibale, A.; Fanfoni, A.; Minissi, F. Org. *Lett.* **2005**, *7*, 1805; (g) Yang, C.-G.; Reich, N. W.; Shi, Z.; He, C. Org. *Lett.* **2005**, *7*, 4553; (h) Wu, J.; Zhu, Q.; Wang, L.; Fathi, R.; Yang, Z. J. Org. Chem. **2003**, *68*, 670; (i) Ma, S.; Wu, S. J. Org. Chem. **1999**, *64*, 9314; (j) Ma, S.; Shi, Z. J. Org. Chem. **1998**, *63*, 6387.
- (a) Kosser, G. F.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1981, 46, 4324; (b) Rebrovic, L.; Kosser, G. F. J. Org. Chem. 1984, 49, 2462.
- (a) Shah, M.; Taschner, M. J.; Kosser, G. F.; Rach, N. L. *Tetrahedron Lett.* **1986**, 27, 4557; (b) Shah, M.; Taschner, M. J.; Kosser, G. F.; Rach, N. L.; Jenkins, T. E.; Cyr, P.; Powers, D. *Tetrahedron Lett.* **1986**, 27, 5437.
- Moriarty, R. M.; Vaid, R. K.; Hopkins, T. E.; Vaid, B. K.; Prakash, O. Tetrahedron Lett. 1990, 31, 201.
- 9. Browne, D. M.; Niyomura, O.; Wirth, T. Org. Lett. 2007, 16, 3169.
- 10. Dohi, T.; Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Org. Lett. 2007, 16, 3129.
- (a) Szumny, A.; Wawrzenczyk, C. Synlett **2006**, 1523; (b) De Mattos, M. C. S.; De Souza, S. P. L.; Elias, S. M. *Heterocycl. Commun.* **2003**, 3, 247; (c) Solabannavar, S. B.; Helavi, V. B.; Desai, U. V.; Mane, R. B. *Tetrahedron Lett.* **2002**, *25*, 4535.
- (a) Fristad, W. E.; Peterson, J. R.; Ernst, A. B. J. Org. Chem. **1985**, 50, 3143; (b) Peterson, J. R.; Do, H. D.; Surjasasmita, I. B. Synth. Commun. **1988**, 18, 1985; (c) Allegretti, M.; D'Annibale, A.; Trogolo, C. Tetrahedron **1993**, 49, 10705; (d) D'Annibale, A.; Trogolo, C. Tetrahedron Lett. **1994**, 35, 2083; (e) Lamarque, L.; Meou, A.; Brun, P. Tetrahedron Lett. **1998**, 39, 8283; (f) Lamarque, L.; Meou, A.; Brun, P. Tetrahedron **1998**, 54, 6497.
- 13. Reaction of dimethyl malonate with 1 equiv of KOH in MeOH at room temperature with stirring readily affords monopotassium methyl malonate.
- (a) Karade, N. N.; Tiwari, C. B.; Huple, D. B. Synlett **2005**, 2039; (b) Karade, N. N.; Tiwari, G. B.; Gampawar, S. V. Synlett **2007**, 1921; (c) Karade, N. N.; Gampawar, S. V.; Tiwari, G. B. *Lett. Org. Chem.* **2007**, 6, 419; (d) Karade, N. N.; Shirodkar, S. G.; Dhoot, B. M.; Waghmare, P. B. J. *Chem. Res.* (S) **2005**, 4, 274; (e) Karade, N. N.; Budhewar, V. H.; Katkar, A. N.; Tiwari, G. B. *ARKIVOC* **2006**, 162.
- 15. Experimental procedure: To a solution of ketone (3 mmol) in MeCN (15 mL) was added [hydroxyl(tosyloxy)iodo]benzene (3.3 mmol) and the mixture was refluxed for 1.5 h. After successful formation of the α -tosyloxyketone (as monitored by TLC), potassium monomethyl malonate (3.6 mmol) was added and the reaction mixture was refluxed for 4–5 h until complete consumption of the α -tosyloxyketone had taken place. Then the reaction mixture was cooled to

room temperature and K_2CO_3 (1.8 mmol) was added and the reaction mixture was refluxed for another 1.5 h. After completion of the reaction, it was diluted with water and extracted with CHCl₃ (15 mL × 2). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a crude product, which was purified by silica gel column chromatography using petroleum ether and ethyl acetate as eluent to afford the pure product.

Spectral data of selected products: *Methyl 2-oxo-2-phenylethyl malonate* (**3a**): IR (KBr): ν = 3024, 2983, 2939, 1759, 1736, 1701, 1597, 1450, 1371, 1336, 1228, 1149, 1031, 973, 759, 691 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 3.59 (s, 2H, CH₂), 3.78 (s, 3H, COOCH₃), 5.41 (s, 2H, OCH₂), 7.51 (t, *J* = 7.48 Hz, 2H, ArH), 7.61 (t, *J* = 7.48 Hz, 1H, ArH), 7.90 (d, 2H, *J* = 7.12 Hz, ArH). ¹³C NMR (400 MHz, CDCl₃): δ = 41.08, 52.77, 70.64, 119.14, 127.86, 129.15, 132.21, 162.75, 165.22, 169.55. LCMS (M+1): m/z = 237.

Methyl 2-oxo-2-(4-methoxyphenyl)ethyl malonate (**3b**): IR (KBr): $v = 2981, 2953, 2845, 1749, 1712, 1693, 1600, 1506, 1431, 1284, 1161, 1022, 844, 779 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): <math>\delta = 3.58$ (s, 2H, CH₂), 3.78 (s, 3H, COCCH₃), 3.88 (s, 3H, OCH₃), 5.36 (s, 2H, CH₂), 6.96 (d, 2H, J = 8.96 Hz, ArH), 7.89 (d, 2H, J = 8.96 Hz, ArH), ¹³C NMR (400 MHz, CDCl₃): $\delta = 41.02, 52.64, 55.60, 66.57, 114.17, 127.08, 130.16, 164.22, 166.08, 189.80. LCMS (M+1): m/z = 267.$

Methyl 2-oxo-2-(2-methoxyphenyl)ethyl malonate (**3c**): ¹H NMR (400 MHz, CDCl₃): δ = 3.57 (s, 2H, CH₂), 3.78 (s, 3H, COOCH₃), 3.95 (s, 3H, OCH₃), 5.31 (s, 2H), 6.99 (d, 1H, *J* = 8.52 Hz, ArH), 7.05 (t, 1H, *J* = 8 Hz, ArH), 7.52–7.55 (m, 1H, ArH), 7.94 (d, 1H, *J* = 7.95 Hz, ArH). LCMS (M+1): *m/z* = 267.

Methyl 2-oxo-2-(4-chlorophenyl)ethyl malonate (**3d**): ¹H NMR (400 MHz, CDCl₃): δ = 3.59 (s, 2H, CH₂), 3.78 (s, 3H, COOCH₃), 5.37 (s, 2H, CH₂), 7.48 (d, 2H, *J* = 8.6 Hz, ArH), 7.85 (d, 2H, *J* = 8.6 Hz, ArH). LCMS (M+1): 271.

Methyl 2-oxo-2-(2-chlorophenyl)ethyl malonate (**3e**): IR (KBr): v = 3026, 2956, 2928, 1759, 1741, 1589, 1431, 1338, 1217, 1149, 971, 785 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 3.54$ (s, 2H, CH₂), 3.76 (s, 3H, COCCH₃), 5.29 (s, 2H), 7.37 (m, 1H, ArH), 7.45 (m, 2H, ArH), 7.64 (m, 1H, ArH). ¹³C NMR (400 MHz, CDCl₃): $\delta = 40.82$, 52.69, 69.00, 127.23, 130.17, 130.68, 131.70, 133.06, 135.49, 165.91, 166.53, 194.33. LCMS (M+1): m/z = 271.

Methyl 2-oxo-2-(4-bromophenyl)ethyl malonate (**3f**): IR (KBr): $v = 3022, 2995, 1753, 1730, 1701, 1585, 1432, 1346, 1203, 1159, 1068, 981, 821 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): <math>\delta = 3.58$ (s, 2H, CH₂), 3.78 (s, 3H, COOCH₃), 5.33 (s, 2H, OCH₂), 7.64 (d, 2H, J = 8.64 Hz, ArH), 7.76 (d, 2H, J = 8.64 Hz, ArH). ¹³C NMR (400 MHz, CDCl₃): $\delta = 40.88, 52.69, 66.59, 129.29, 132.30, 132.45, 132.71, 165.95, 166.58, 190.53. LCMS (M+1):<math>m/z = 316$.

Methyl 2,5-dihydro-2-oxo-4-phenylfuran-3-carboxylate (**4a**): IR (KBr): v = 3024, 2970, 2937, 1751, 1732, 1637, 1442, 1372, 1340, 1242, 1069, 1039, 768, 696 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.89$ (s, 3H, COOCH₃), 5.18 (s, 2H, OCH₂), 7.46–7.55 (m, 5H, ArH). ¹³C NMR (400 MHz, CDCl₃): $\delta = 52.79$, 70.66, 119.10, 127.87, 129.15, 132.24, 162.77, 165.31, 169.60. LCMS (M+1): m/z = 219. Methyl 2,5-dihydro-4-(4-methoxyphenyl)-2-oxofuran-3-carboxylate (**4b**): IR (KBr): v = 3018, 2953, 2927, 1739, 1605, 1515, 1435, 1215, 1179, 1030, 753, 667 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.87$ (s, 3H, OMe), 3.91 (s, 3H, OMe), 5.16 (s, 2H, OCH₂): $\delta = 52.72$, 55.66, 70.38, 114.57, 116.49, 121.35, 130.08, 162.91, 163.34, 164.51, 170.08. LCMS (M+1): m/z = 249.

Methyl 2,5-dihydro-4-(2-methoxyphenyl)-2-oxofuran-3-carboxylate (**4c**): IR (KBr): v = 3076, 2951, 2838, 1731, 1599, 1536, 1462, 1434, 1248, 1165, 1022, 802, 754 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.81$ (s, 3H, OMe), 3.84 (s, 3H, OMe), 5.18 (s, 2H, OCH₂), 6.99 (d, 1H, *J* = 11.2 Hz, ArH), 7.04 (t, 1H, *J* = 8.8 Hz, ArH), 7.31 (d, 1H, *J* = 8.0 Hz, ArH), 7.47 (t, 1H, *J* = 7.6 Hz, ArH). ¹³C NMR (400 MHz, CDCl₃): $\delta = 52.43$, 55.45, 71.45, 111.51, 118.67, 120.44, 120.93, 129.29, 133.20, 156.93, 162.76, 163.93, 169.85, LCMS (M+1):m/z = 249.

Methyl 2,5-*dihydro*-2-*oxo*-4-*p*-*tolylfuran*-3-*carboxylate* (**4e**): IR (KBr): v = 3032, 2960, 2926, 2870, 1750, 1716, 1631, 1609, 1433, 1344, 1249, 1132, 819, 787, 713 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.42$ (s, 3H, ArCH₃), 3.78 (s, 3H, COOCH₃), 5.39 (s, 2H, OCH₂), 7.28 (d, 2H, J = 8.96 Hz, ArH), 7.81 (d, 2H, J = 8 Hz, ArH). ¹³C NMR (400 MHz, CDCl₃): $\delta = 21.64$, 52.73, 70.54, 118.09, 126.24, 127.89, 129.85, 143.23, 163.01, 165.11, 169.79. LCMS (M+1): m/z = 233.

127.89, 129.85, 143.23, 163.01, 165.11, 169.79. LCMS (M+1): m/z = 233. Methyl 2,5-dihydro-4-(4-bromophenyl)-2-oxofuran-3-carboxylate (**4f**): ¹H NMR (400 MHz, CDCl₃): $\delta = 3.90$ (s, 3H, OMe), 5.15 (s, 2H, OCH₂), 7.43 (d, 2H, J = 8.68 Hz, ArH), 7.63 (d, 2H, J = 8.68 Hz, ArH). LCMS (M+1): m/z = 297.

Methyl 2,5-*dihydro-4-(4-chlorophenyl)-2-oxofuran-3-carboxylate* (**4**h): IR (KBr): w = 2982, 2847, 1747, 1723, 1617, 1488, 1376, 1341, 1299, 1252, 832, 764 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.92$ (s, 3H, OMe), 5.17 (s, 2H, OCH₂), 7.53 (d, 2H, *J* = 11.2 Hz, ArH), 7.48 (d, 2H, *J* = 11.2 Hz, ArH). ¹³C NMR (400 MHz, CDCl₃): $\delta = 52.93$, 70.49, 119.51, 127.57, 129.32, 129.53, 138.60, 162.52, 164.20, 169.24. LCMS (M+1): m/z = 253.